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We tested the hypothesis that transient microinjury to the brain elicits cellular and humoral responses that stimulate hippocampal
neurogenesis. Brief stereotaxic insertion and removal of a microneedle into the right hippocampus resulted in (a) significantly
increased expression of granulocyte-colony stimulating factor (G-CSF), the chemokine MIP-1a, and the proinflammatory cytokine
IL12p40; (b) pronounced activation ofmicroglia and astrocytes; and (c) increase in hippocampal neurogenesis.This study describes
immediate and early humoral and cellularmechanisms of the brain’s response tomicroinjury that will be useful for the investigation
of potential neuroprotective and deleterious effects of deep brain stimulation in various neuropsychiatric disorders.

1. Background

Deep brain stimulation through chronically implanted metal
electrodes into specific brain regions is becoming a com-
mon therapeutic choice for medication refractory movement
disorders such as Parkinson’s disease (PD), tremors, and
dystonia (see reviews [1–3]). More recently, DBS has been
applied to psychiatric and behavioral disorders including
depression, obsessive compulsive disorder, and addiction and
most recently to disorders of consciousness [4–9].

Long-term implantation of a fine metal electrode,
even without chronic electrical stimulation may produce
unwanted effects. Neuropathological examination of brain
tissue from patients with DBS revealed activated astrocytes
and microglia regardless of the underlying disease [10–15].
Electrical stimulation is not required to see signs of neu-
roinflammation; inflammatory changes have been observed
around recording electrodes used for characterizing epilep-
togenic tissue and around CSF fluid shunt catheters [16, 17].

To understand the earliest reactions to implantation of
a metal electrode, we studied the cellular and cytokine
responses over time to transient insertion of a fine needle

(maximumdiameter of 200𝜇m) into the dorsal hippocampus
of the mouse. We tested the hypothesis that the creation
of a focal microlesion in hippocampus elicits self-repair
mechanismsmediated by cytokines which activate microglia,
promote astrocytosis, and stimulate stem/progenitor cells to
proliferate and generate new neurons.

2. Materials and Methods

All procedures described here were reviewed and approved
by the IACUC Committee of the University of South Florida
and the Haley VA Research Service.

2.1. Animals. C57BL/6 mice, 8–10 weeks old, were pur-
chased from Harlan Laboratories, and transgenic GFP mice
(C57BL/6-Tg [ACTB-EGFP] 1Osb/J, 003291) were purchased
from Jackson Laboratory (Bar Harbor, ME). Most of the
experiments utilized groups of C57BL/6 mice, and one
experiment utilized chimeric mice (C57BL/6 mice trans-
planted with green fluorescent protein expressing (GFP+)
bone marrow).
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2.2. Generation of Chimeric Mice. The procedure for bone
marrow harvesting from tg GFP+ mice has been previously
published by Sanchez-Ramos and coworkers [18, 19]. Briefly,
bone marrow cells are collected from femurs and tibias of
adult male GFP transgenic mice by flushing the bone shaft
with PBS + 0.5% bovine serum albumin (BSA) + 2mM
ethylenediaminetetraacetic acid (EDTA) (Sigma).

To generate chimeric mice, C57BL/6J mice were lethally
irradiated with 8Gy total body irradiation (delivered in two
fractions of 4Gy, an interval of 4 hours) at dose rate of
1.03Gy/min in a Gammacell 40 Extractor [20]. Following
irradiation, the mice were given a bone marrow transplant
(10 × 106 mononuclear cells) from transgenic GFP mice
infused via tail vein. Bone marrow-derived cells in the
rescuedmice were readily tracked by virtue of their green flu-
orescence. Examination of blood smears from tail clippings
for the presence of green monocytes confirmed successful
engraftment.

2.3. Stereotaxic Insertion and Removal of Microneedle.
Animals were anesthetized with sodium pentobarbital
(50mg/kg, i.p.) and placed into a stereotactic frame. Using
bregma as the reference point, a trephine hole was then
drilled in the skull and the needle was gently inserted into
the hippocampus (AP 2.5mm; ML 1.3mm; DV 3.5mm).
Mice received 5-bromo-2󸀠-deoxyuridine (BrdU) (Sigma)
injections (100mg/kg i.p. Bid, immediately after the surgery
and 2 days after surgery) to label nascent cells during a 3-day
period.

2.4. Tissue Preparation and Sectioning. At one, two, and four
weeks after needle stimulation, mice were anesthetized with
10% chloral hydrate and a transcardial perfusion of the brain
with 20mL saline and 50mL of 4% paraformaldehyde was
done. The brain was removed and fixed for 48 hours in
the same solution. After fixing, the brains were immersed
overnight in 20% sucrose in PBS. Thirty 𝜇m frozen sec-
tions through the striatum, hippocampus, midbrain, and
cerebellum were prepared and stored in vials containing a
cryopreservation solution.

2.5. Immunohistochemistry. Brain sections were preincu-
bated in PBS containing 10% normal serum (goat or donkey;
Vector) and 0.3% Triton X-100 (Sigma) for 30min. The sec-
tions were then transferred to a solution containing primary
antibodies in 1% normal serum and 0.3% triton X-100/PBS
and incubated overnight at 4∘C. The specific antibodies used
in each experiment were rat anti-BrdU (Serotec), 1 : 100;
mouse anti-NeuN (Chemicon), 1 : 50; mouse antinestin (BD
Biosciences); rabbit anti-DCX (Abcam Inc.), 1 : 1000; rabbit
anti-Iba1(Wako Chemicals, USA, Inc.), 1 : 500; rabbit anti-
GFAP (BioGenex), 1 : 50 in PBS containing 1 : 100 normal
serum without Triton X-100. After incubation with primary
antibody, the sections were washed and incubated for 1 hour
with Alexa Fluor 488 goat anti-mouse IgG diluted 1 : 400 in
PBS or Alexa Fluor 546 goat anti-rabbit IgG diluted 1 : 600
in PBS (Invitrogen) at room temperature. Isotype controls
matching the primary antibody’s host species (mouse) were

used in place of the primary antibody (monoclonal to
NeuN and Nestin) to check for specificity of the stain. The
sections were then rinsed in PBS three times and covered
with a cover glass. Some sections were stained (after all
other staining) with DAPI (300 nM) for nuclear staining.
Fluorescent signals from the labeled cells were visualizedwith
fluorescence microscopy using appropriate filters or a Zeiss
LSM510 confocal microscope.

2.6. Image Analysis and Cell Counts. Quantitation of
microgliosis and astrogliosis was made by computerized
image analysis. Images at 20x magnification were acquired
as digitized tagged-image format files to retain maximum
resolution using an Olympus BX60 microscope with an
attached digital camera system (DP-70, Olympus). Digital
images were routed into a Windows PC for quantitative
analyses using ImageJ software (NIH). Images of six sections
(180 𝜇m apart) were captured from serially sectioned
hippocampus. Color images were separated into green, red,
and blue channels. The monochrome image for green (either
Iba1 or GFAP) was then processed by setting a threshold
to discriminate staining from background. Each field of
interest was manually edited to eliminate artifacts. For
the Iba1 (microgliosis) and GFAP (astrocytosis) burden
analyses, data are reported as the percentage of labeled area
captured (positive pixels) divided by the full area captured
(total pixels). Bias was eliminated by analyzing each entire
region of interest represented by the sampling of 6 sections
per hippocampus. A total of 6–8 mice hippocampi were
analyzed.

Unbiased estimates of the number of immature neu-
rons dentate gyrus (DG) were made by counting DCX-
immunoreactive cells in serially sectioned hippocampus
according to the method previously described [21, 22]. Esti-
mates of numbers of BrdU labeled microglia (Iba1-BrdU+)
cells in hippocampuswere also determined. Briefly, positively
labeled cells were counted in every 6th section (each section
separated by 180 𝜇m) using a modification to the optical
dissector method; cells on the upper and lower planes were
not counted to avoid counting partial cells. The number of
DCX+ cells counted in every 6th section was multiplied by 6
to get the total number of DCX cells in the DG and Iba1 cells
in hippocampus. The total number of hippocampi analyzed
was 3 for each time period. The unlesioned left hippocampus
served as control.

2.7. Cytokine Assay. After creating a right-side hippocampus
microlesion, mice were euthanized at 6, 12, 24, 48, and 72
hours (𝑛 = 3 mice per time interval) followed by perfusion
with saline. Frontal cortex and hippocampus of the left and
right brains were dissected and kept in freezer for cytokine
assay. Levels of 17 cytokines were measured using Bio-Rad
Bio-Plex kits (Bio-Rad, catalogue number 171F11181). Samples
and standards were prepared using company protocols with
the initial concentration of standards ranging from 32 ng/mL
to 1.95 pg/mL. Samples were prepared for analysis by diluting
1 volume of the tissue sample with three volumes of the Bio-
Plex mouse sample diluent. Using the microplate readout,
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Figure 1: Cellular response to insertion and removal of amicroneedle. (a) Lowpower viewof cells labeledwithBrdU in region of hippocampus
andmidbrain (BrdU = red; NeuN = green); needle was inserted on the right side of brain (yellow line). BrdU injections were given on the day
of lesion and subsequent two days. Image taken one week after lesion. BrdU+ cells are found along the needle track and in the subarachnoid
space and vasculature on both sides of brain. Scale bar = 200 𝜇m for panels (a), (b), (c), and (d). (b) Hippocampus (rostral to section in
(a)) from the same animal on the unlesioned side. BrdU+ cells are seen in cortex, corpus callosum, the subarachnoid space, dentate gyrus,
subgranular zone, and stratum lacunosum molecular of the hippocampus (one week after lesion). (c) Nonlesioned hippocampus opposite
the lesioned hippocampus in panel (d) (2 wks after lesion). (d) Site and track of needle insertion (yellow line). Two weeks after lesion. (e)
Nonlesioned hippocampus at higher power (Iba1 = green scale; bar = 20 𝜇m for panels (e), (f), (g), and (h)). (f) Iba1+ cells in lesioned
hippocampus. (g) BrdU+ cells on nonlesioned side, corresponding to panel (e). (h) BrdU+ cells on lesioned side, corresponding to panel (f).
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Figure 2: Continued.
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Figure 2: Microgliosis indicated by Iba1 immunostaining in hippocampus at 2 wks and 4wks after microlesion. Panels on the left ((a), (c),
(e), and (g)) illustrate the microglial response on the unlesioned control side, and the panels on the right ((b), (d), (f), and (h)) are the
corresponding lesioned sides. Panels (a), (b) = Iba1 immunostaining; (c), (d) = BrdU+ cells corresponding to sections (a) and (b), respectively.
Panels (e), (f) are merged images of Iba1-BrdU signal 2 wks after lesion. Panels (g), (h) are merged images of Iba1-BrdU signals 4 wks after
lesion. Insert box shows a merged confocal microscopic image of double-labeled Iba-1-BrdU. (i) Microgliosis assessed by image analysis of
Iba1 signal. 𝑦-axis = mean Iba1 signal area (as percent of hippocampal field at 20x magnification). Microglial signal was 16 times greater on
the lesioned side than control at 2 wks (∗𝑃 < 0.001).Themicroglial signal on the lesioned side declined significantly after 4wks (∗∗𝑃 < 0.001)
but remained significantly elevated compared to the unlesioned side. (j) BrdU signal area was 3 times greater on the lesioned side at 2 wks
and declined after 4wks. (k) A number of Iba1+ cells were approximately 2.45 times greater on the lesioned hippocampus compared to the
nonlesioned control at both 2 and 4wks (∗𝑃 < 0.01). Notice that microglia in the lesioned hippocampus are larger than on the control side,
and therefore, the total Iba1 signal area is much greater than total number of cells. (l) A number of double-labeledmicroglia (Iba1/BrdU) were
also greater on the lesioned side than controls at both 2wks (∗𝑃 < 0.05). Double-labeled microglia comprised ∼36% of the total number of
Iba1+ cells. Scale bar = 20 𝜇m.

each cytokine level was calculated based on its own standard
curve.

2.8. Statistical Analysis. Neurohistologic measures were
expressed as mean ± SEM and statistically evaluated using 2-
way ANOVA followed by Bonferroni corrections for multiple
comparisons (GraphPad version 5.01). The time course of
cytokines release was analyzed using 2-way ANOVA. All
comparisons were considered significant at 𝑃 < 0.05.

3. Results

Insertion and immediate removal of a fine needle to the
hippocampus on one side of brain resulted in mobilization
of cells along the needle track. BrdU+ cells labeled in vivo
during the 3 days after placement of the lesion were found
along the microinjury track through cerebral cortex to the
hippocampus and to a lesser extent were observed along
the corpus callosum on both sides of the brain (Figure 1).
Although many of the BrdU+ cells appear to be derived from
peripheral blood, any cell with proliferative capacity within
brain and its liningmembranes were also labeled. BrdU+ cells
were found in the needle-breeched subarachnoid space and
cerebrospinal fluid (CSF), from where they have access to

hippocampus by way of the CA3-dentate gyral border with
the ventricle, even on the nonlesioned side (Figure 1(b)).

The labeling of tissue sections with anti-Iba1 antibodies
revealed both a significant proliferation and enlargement of
microglial cells (Figure 2). Two weeks after placement of
the lesion, the mean Iba1 signal area per field, reflecting
both size and number of cells, was 16 times the signal on
the unlesioned control side (Figures 2(a), 2(b), and 2(i)).
At four weeks, the signal on the lesioned side remained
elevated but was decreased compared to the signal at 2 wks,
suggesting a time-dependent downregulation of microgliosis
in this model (Figures 2(h) and 2(i)). The mean BrdU signal
area was 3 times greater on the lesioned side than the
control side, but like the Iba1 signal, BrdU area decreased
significantly from 2wks to 4wks (Figure 2(j)). The number
of Iba1+ cells was approximately 2.45 times greater on the
lesioned hippocampus compared to the nonlesioned control
at both 2 and 4wks (Figure 2(k)). The microglia in the
lesioned hippocampus were morphologically larger than on
the control side, and therefore the total Iba1 signal area is
much greater than the total number of counted cells. The
Iba1+ cell counts likely underestimated the true number of
microglia because individual cells were difficult to distinguish
in regions where the intense microgliosis resulted in clus-
ters of Iba1+ staining. However, when Iba1+ cells that had
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a nucleus labeled with BrdU (Iba1/BrdU) were counted, there
was clearly a significantly greater number of Iba1/BrdU+
cells on the lesioned side than in controls at 2 wks (∗𝑃 <
0.05). Double-labeled microglia comprised ∼36% of the total
number of Iba1+ cells, suggesting that a significant proportion
of microglia were born after the 3 days of labeling with
BrdU.

The contribution of blood-derived cells (GFP+ cells in
chimeric mice) to the total microglial population is shown
in Figure 3. The image analysis of GFP+ and Iba1 signals
on the lesioned side revealed a mean GFP+ signal equal to
26% of the total Iba1 signal (ratio of 13.4/51.6), suggesting
that approximately one-fourth of the microglial signal comes
from the peripheral blood (GFP+ bone marrow-derived
cells). Cells counts of double-labeled Iba1/GFP cells confirm
a significantly increased number of blood-derived microglia
on the lesioned side compared to the unlesioned side.

The microlesion also triggered significant astrocytosis,
indicated by GFAP immunoreactivity (Figure 4). GFAP sig-
nal on the lesioned side was 6 times that of the nonlesioned
control side. Like themicrogliosis, theGFAP signal decreased
by 4wks after the lesion (Figure 4(g)). Counts of GFAP+ cells
were not done because of difficulty in discerning individual
GFAP+ astrocytes in many regions of astrocytosis.

Insertion and removal of the needle stimulated neuroge-
nesis in the subgranular zone of hippocampus, indicated by
immunostaining for doublecortin (DCX), a marker of imma-
ture neurons (Figure 5). The mean DCX signal in dentate
gyrus was significantly increased at 2 weeks and remained
increased at 4wks compared to the nonlesioned control side
(Figure 5(d)). Unbiased estimates of cell counts of DCX-
BrdU colabeled cells were also increased significantly at 2 and
4 weeks (Figure 5(e)). The total number of double-labeled
cells was diminished at 4wks compared to 2wks, suggesting
that many new neurons, born in the immediate days after
lesion placement, undergo subsequent apoptosis. However,
DCX+ cells, unlabeled with BrdU, were clearly maintained at
approximately the same level at 2 and 4wks, suggesting there
are cytokine signals that continue to stimulate generation of
new neurons beyond the time frame of BrdU injections (i.e.,
first 3 days of microlesioning).

The contribution of blood-born GFP+ cells to increased
neurogenesis was examined (Figure 6). Rare GFP+ cells
were found to coexpress nestin in the neurogenic niche
(Figure 6(d)) but these cells did not express the typical
fibrillary processes of neural progenitors in the subgranular
zon [23]. Hence, increased neurogenesis triggered by the
lesion could not be attributed to transdifferentiation of blood-
derived cells.

Within 6 hrs of creating the microlesion, 3 out of 17
soluble cytokines were significantly increased in hippocam-
pus and frontal cortex (along the path of needle insertion).
Granulocyte-colony stimulating factor (G-CSF), MIP-1a, and
IL12p40 were increased in both hippocampus and frontal
cortex (Figure 7). G-CSF levels peaked at 6 hrs after place-
ment of the lesion and returned to levels measured on the
unlesioned control side by 24 hrs. IL12p40 concentrations
peaked at 12 hrs and were back to baseline by 72 hrs. MIP-1a
peaked at 12 hrs and remained elevated until 72 hrs.

4. Discussion

Simple insertion and immediate removal of a sterile fine
needle into the dorsal hippocampus triggered a robust cel-
lular response characterized by proliferation of microglia
and astrocytes. The microgliosis and astrocytosis remained
prominent up to 4wks, though it declined from the maxi-
mum intensity at 2 wks after the lesion. Of the total microglial
signal in hippocampus, approximately 36% of these cells were
born during the 3-day period after the lesion placement (indi-
cated by double-labeled BrdU-Iba1 cells). The contribution
of blood-born cells (indicated by GFP+ cells in chimeric
mice) to total microglial burden was approximately 26%.The
contribution of blood monocytes to the brain population of
microglia is dynamic and can change dramatically following
injury, infection, or neurodegenerative processes [24–29].
As shown here, even a brief microinjury as represented by
insertion and immediate removal of a fine sterile needle
into brain triggers a significant infiltration and activation of
blood-derived microglia.

A potentially beneficial consequence of the microlesion
was the stimulation of neurogenesis in the subgranular zone
of the dentate gyrus, evidenced by the significant increase
in total DCX signal, a marker of immature neurons [30].
The DCX signal at 4wks remained elevated even as the
numbers of double-labeled BrdU-DCXdecreased by 4weeks.
The discrepancy between total DCX and BrdU-DCX labeled
cells remained high at 4wks, but the decrease in double-
labeled BrdU-DCX at 4 weeks may be explained by (a)
programmed cell death of new neurons born during the
immediate postlesion period and (b) continued neurogenesis
in the period after BrdU injections. The contribution of
blood-derived cells (GFP+) to neurogenesis in chimericmice,
as indicated by GFP-Nestin coexpression in subgranular
zone, was negligible, suggesting that the source of cells for
neurogenesis was within the neurogenic niche itself rather
than recruitment of exogenous cells. It is notable that these
GFP-Nestin expressing cells did not exhibit radial fibers
typical of neural progenitors in the subgranular zone [23].
Nestin-GFP+ coexpressionmay also indicate development of
endothelial cells from bone marrow-derived GFP+ cells.

The cascade of events that resulted in these cellular
responses is complex, but the findings here identify a
few salient cytokines that may contribute to the cellular
mobilization. Macrophage inflammatory protein-1a (MIP-1a,
also known as CCL-3) is known for its chemotactic and
proinflammatory effects. Levels of MIP-1a remained elevated
for 3 days and most likely played a role in the activation
of microglia and astrocytes and also in the recruitment
of blood-born monocytes to the site of injury. IL12-p40
(also known as cytotoxic lymphocyte maturation factor 2) is
a proinflammatory cytokine with immunoregulatory prop-
erties, especially in promoting Th1 cell-mediated immune
responses [31]. G-CSF is a hematopoietic cytokine that
increases proliferation of blood stem stems and results in
increased number of polymorphonuclear leukocytes [32].
More recently, it has been recognized as a neurotrophic
factorwith antiapoptotic effects and direct actions to promote
neurogenesis [33]. In the present study, elevated G-CSF levels



Stem Cells International 7

(a) (b)

(c)

(d)

40

30

20

10

0

Lesion Control

GFP+ and Iba1 hippocampus

GFP+ cells
Iba1+ cells

Si
gn

al
(%

 ar
ea

 o
f fi

el
d)

(e)

1000

800

600

200

0

N
um

be
r o

f c
el

ls

Cell count (GFP/Iba1+)

Lesion Control

400

(f)

Figure 3: Contribution of blood-derived cells to microgliosis in chimeric mice 2 weeks after lesion placement. (a) Blood-derived GFP+
cells in hippocampal region. (b) Microgliosis two weeks after the lesion is indicated by Iba1 immunoreactivity. (c) Merged images of GFP+
(A) and Iba1+ cells (B). (d) Merged confocal image showing double-labeled microglia (yellow) at a higher magnification. (e) Mean Iba1 and
GFP+ signals. On the lesioned side, the mean GFP+ signal is 26% of the total Iba1 signal (ratio of 13.4/51.6). (f) Cells count of double-labeled
Iba1/GFP cells is significantly greater on the lesioned side than control.
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Figure 4: Astrocytosis in hippocampus indicated by GFAP immunoreactivity. Panels on the left ((a), (c), and (e)) depict the unlesioned
control side; panels (b), (d), and (f) show the lesioned side. (a), (b) = GFAP (green channel); (c), (d) = BrdU (red channel); (e), (f) merged
channels (GFAP and BrdU). (g) Astrocytosis measured as extent of GFAP immunoreactivity (mean % area of field) was increased 6 times
that of control (𝑛 = 3mice at 2 wks; 3 mice at 4wks; 6 sections per mouse). 2-way ANOVA showed that both treatment and time contribute
significantly to the variance. Signal was significantly higher on lesioned side at 2 weeks. At 4 weeks, themean signal had declined significantly.
∗
𝑃 < 0.001; ∗∗𝑃 < 0.001 using Bonferroni correction for multiple comparisons.
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Figure 5: Microlesion stimulates neurogenesis. (a) Merged image of DCX and BrdU immunoreactive cells on the unlesioned control side
(2wks after the lesion). (b) Lesioned side illustrates increased DCX and BrdU (merged image). (c) Same as panel (b), but magnified; scale
bar = 20 𝜇m. Doublecortin (DCX) Immunoreactive cells in the subgranular zone of the dentate gyrus extend processes into the granular
zone. The box inserted in (c) depicts confocal images of double-labeled DCX-BrdU cell at a higher power. Upper two panels are isolated for
DCX (green) and BrdU (red) immunofluorescence, and the lower panel is the merged image (scale bar = 10 𝜇m). (d) Summary data of DCX
signal expressed as percent of DG field. Lesioned side exhibits a significantly increased DCX signal compared to control at both 2 and 4wks
after the microlesion. Unlike microgliosis and astrocytosis, the DCX signal does not decline after 4wks. (e) Cell counts of double-labeled
immature neurons (DCX/BrdU) born within 2 days of lesion placement. The lesion significantly increased birth of new neurons compared
to unlesioned control side. 𝑃 < 0.001. However, the number of double-labeled cells was significantly less at 4wks than observed at 2 wks.
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Figure 6: Chimeric mice stained for GFP (green) and Nestin (red). (a) GFP+ cells can be seen along the needle track and infiltrating in the
sub-granular zone (SGZ) of the dentate gyrus (DG) and the CSF fluid space ventral to the hippocampus (scale bar = 200 𝜇m). (b) GFP+ cells
in the SGZ of the DG. (c) Nestin+ cells in SGZ of the DG. Most of the GFP+ cells are in the hilus (also known as CA4). (d) Merged image
illustrating coexpression of GFP and nestin in two cells (asterisks) in the immediate SGZ (scale bar = 20 𝜇m).
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Figure 7:Three of the 17 cytokines measured in hippocampus and frontal cortex (path of the needle track) were significantly changed on the
lesioned side compared to the control side. Each time point was determined from 𝑛 = 3 mice (total of 18 pairs of hippocampi), and assays
were run in triplicate. 2-way ANOVA (treatment versus time) revealed a significant effect (𝑃 < 0.05) for each of the cytokines except for
G-CSF levels in frontal cortex.
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may have contributed to hippocampal neurogenesis. Other
cytokines weremeasured (including EGF, BDNF, and various
pro- and anti-inflammatory cytokines) but were not found
to be significantly altered. A limitation in the present study
is that immediate cellular responses to microinjury (hours
to several days) were not studied, and so the relationship of
the acute cytokine release profile to the immediate cellular
response pattern is not available. Nevertheless, the cellular
responses documented here at 2 and 4wks can be seen
as a consequence of the acute humoral reaction to the
microlesion. More mechanistic studies in the future will
be designed to determine the effects of blocking specific
cytokines on the cellular responses.

These findings may be relevant to the growing clinical
practice of DBS through chronically implanted metal elec-
trodes into specific brain regions. Electrical stimulation is not
required to see signs of neuroinflammation; inflammatory
changes have been observed around recording electrodes
used for characterizing epileptogenic tissue and around CSF
fluid shunt catheters [16, 17].The animal literature also reveals
similar activation of microglia and astrocytes following
insertion of electrodes and other intracerebral implants [34–
38]. Recently, a study of electrode implantation, without
electrical stimulation, has revealed persistent and widespread
neuroinflammation in rats, which extends beyond the elec-
trode track in a region-selective manner [39]. Widespread
neuroinflammation appears to be a general feature of the
chronic implantation procedure, since it was found in rats
implanted with three different types of electrodes varying in
thickness and shape.

On the other hand, the enhanced hippocampal neuroge-
nesis elicited by microlesions in young adult mice may not
be completely applicable to human patients who are typically
older and suffer from conditions such as AD, in which
neurogenesis is impaired. However, research with transgenic
mouse models of AD (tg APP/PS1) has revealed that the
hippocampus retains competency to generate new neurons,
especially when triggered by administration of G-CSF or
when mice are provided enriched environments and exercise
[18, 40].

5. Conclusions

Microinjury was produced by insertion and removal of a
fine needle targeting the hippocampus on one side. The
lesion caused a time-dependent increase in levels of several
inflammatory and anti-inflammatory cytokines. Subsequent
histological analysis at 2 and 4 weeks revealed microglio-
sis and astrocytosis. Microgliosis was a prominent cellular
response, and though bonemarrow-derived cells contributed
to this population of cells, themajority of activated microglia
were endogenous to the brain.Themicrolesion also increased
hippocampal neurogenesis, indicated by the increased num-
bers of immature neurons (DCX+ cells) counted in the sub-
granular zone. Based on what is known in the literature about
the cytokines (MIP-1a, IL12-p40, and G-CSF), their increased
levels very likely contributed to the cellular inflammatory
response around and distant from the lesion. These findings

are relevant to the growing clinical practice of DBS through
chronically implanted metal electrodes into specific brain
regions. Electrical stimulation is not required to see signs
of neuroinflammation. G-CSF, which has neuromodulatory
effects, has previously been shown to increase hippocampal
neurogenesis in mice models of Alzheimer’s disease, and this
correlated with improved performance in a hippocampal-
dependent learning task [41]. G-CSF is increasingly recog-
nized as a neurotrophic factor that attenuates neuronal death
and enhances functional recovery in various animal models
of neurological disorders and is being explored in clinical
trials [33, 42–45].
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[42] W. R. Schäbitz and A. Schneider, “New targets for established
proteins: exploring G-CSF for the treatment of stroke,” Trends
in Pharmacological Sciences, vol. 28, no. 4, pp. 157–161, 2007.

[43] L. Tonges, J. C. Schlachetzki, J. H. Weishaupt, and M. Bahr,
“Hematopoietic cytokines—on the verge of conquering neurol-
ogy,”CurrentMolecularMedicine, vol. 7, no. 2, pp. 157–170, 2007.

[44] Y. Nishio, M. Koda, T. Kamada et al., “Granulocyte colony-
stimulating factor attenuates neuronal death and promotes
functional recovery after spinal cord injury in mice,” Journal of
Neuropathology and Experimental Neurology, vol. 66, no. 8, pp.
724–731, 2007.

[45] T. Duning, H. Schiffbauer, T. Warnecke et al., “G-CSF prevents
the progression of structural disintegration of white matter
tracts in amyotrophic lateral sclerosis: a pilot trial,” PLoS ONE,
vol. 6, no. 3, Article ID e17770, 2011.


